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The TiC14-induced condensation of (+ )-(1 S,4S,5S,6S)-5,6-isopropylidenedioxy-2-t-butyldimethylsilyloxy-7- 
oxabicyclo[2.2.l]hept-2-ene with 2,3-O-isopropylidene-~-glyceraldehyde was highly stereoselective, giving a product 
that was converted with high stereoselectivity into protected D-erythro-D-talo-octose and D-erythro-L-allo-octose. 

The discovery of important antibiotics containing higher- 
carbon sugars (with carbon chains containing more than six 
atoms) or analogues1 has stirred a renewed interest in the 
synthesis of these complicated compounds.2 We report on the 
application of the cross-aldolization of sugar aldehydes with 
7-oxanorbornan-2-one derivatives readily obtainable in both 
enantiomerically pure forms.3.4 

The TiCl4-rnediated condensation (R)-2,3-O-isopropyl- 
ideneglyceraldehyde (3) with enol ether (+)-( 1S)-(2) derived 
from (-)-( 1)4.5 afforded the P-hydroxyketone (-)-(4) {m.p. 

stereoisomers could be observed in the 360 MHz IH n.m.r. 
spectrum of the crude reaction mixture. The exo-configura- 
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Scheme 1. Reagents and conditions: i ,  Bu*Me2Si(Me)NCOCF3, Et3N, 
dimethylformamide (DMF), 60 "C, 18 h,  85%; ii, TiCL, CH2C12, 
-78 " c ,  5 min, 50-65%. 

tion of the newly created C-C bond was indicated by 
34H-C(3), H-C(4)] ca. 0 Hz. The (S)-configuration of the 
alcoholic carbon centre was established as shown below. It 
corresponds to an anti mode of cross-aldolization, in agree- 
ment with the Felkin's mode1.6.7 In contrast, the reaction of 
(3) with the enantiomeric enol ether (-)-(lR)-(2) gave 
( + ) - ( 5 )  (61%) with the (R) configuration at the alcohol 
centre. These results can be interpreted in terms of the 
transition states shown in Figure l(a) for reaction of (+)-(2) 
with (3) and in Figure l(b) for reaction of (-)-(2) with ( 3 ) , 7  
which minimize steric repulsions between the reactants. 

Baeyer-Villiger oxidation of ( -)-(4) gave exclusively lac- 
tone (+)-(6) {m.p. 159-160 "C, [a]D2' 21.8' ( c  0.84, 
CH2C1,)}. Treatment with dry MeOH containing a trace of 
K2C03 furnished furanose (7) as a 1 : 2  mixture of a- and 
(J-anomer. Selective silylation gave (8) (mostly fLanomer), 
which was reduced with LiA1H4 to diol (9). Displacement of 
the primary alcohol in (9) with 2-N02C6H4SeCN and tri- 
phenylphosphineg afforded (+)-(lo) ([a]$ 42' (c 0.17, 
CH2C12)} after acetylation. Oxidative elimination of the 
selenide led to (+)-(11) {[&ID2' 19" (c 0.18, CH2C12)) which 
furnished ketone (+)-(l2) 42" (c 0.35, CH2C12); 
3J[H-C(3), H-C(4)] 1.5 Hz} upon ozonolysis. Reduction of 
(+)-(12) with LiAlH4 in tetrahydrofuran (THF) (0 "C, I0 min) 
gave a 2.7: 1 mixture of the partially protected D-erythro- 

D-erythr~-L-alZo-octose (14) { 35.5" (C 0.2, CHZC12)) 
derivatives which could be separated by column chrornato- 
graphy on silica gel in 50 and 22% yield, respectively. With 
NaBH4 (MeOH, 0 "C, 15 min) the selectivity was only 2 : 1. It 
was improved to 6 : 1 using NaBHdCeCI3 (MeOM. -78 "C, 
1 h), to 10 : 1 using lithium-~-isopinocampheyl-9-borabi- 
cyclo[3.3. llnonyl hydride ('Alpine Hydride') (THF, -78 "C, 
1 h), and to >20: 1 with L-Selectride (THF, -78 T, 1 h,  
90%). Most interesting was the reversal of the selectivity of 
the reduction of (+)-(12) when using Bu12A1H in THF. For 
reaction at  -25 "C (3 h, 87% yield), the product ratio (13)/(14) 
was < 1 :  20. Under conditions similar to those that converted 
(-)-(4) into (13) and (14), the corresponding D-threo-L-talo- 

D-tQlO-OctOSe (13) ( [ a ] ~ ~ '  26.1" (C 0.23, CH2C12)) and 

Figure 1. Transition states for reactions of (2) with (3). 



994 J .  CHEM. SOC. ,  CHEM. COMMUN., 1989 

Me Me 

(13) 

+ 

R ' O W  Me02l: p k M e  

ii, III 

, ,  
Q3 0 '0 

Me Me Me xMe 

( 7 )  R ' = H  (9) x =OH,R~=H 
(8) R1=R ( t ) - ( l O )  X =2-N02C6H,Se,R2=Ac 

vii,viii 1 
H 

H" 
. .  

R = BufMe2Si 

R o d M e  

Me d2 Me 

Scheme 2. Reagents and conditions: i, mCPBA (m-chloroperbenzoic acid), CHzC12, 20 "C, 24 h, 81%; ii, K2C03, MeOH, 20 "C, 20 min, 
99%; iii, 2,6-lutidine, ButMe2SiOS02CF3, CH2C12, 0 "C, 1 h, 83%; iv, LiAlH4, THF, 0-20 "C, 30 min, 92%; v,  2-N02C6H4SeCN, 
THF, then B u ~ P ,  50 "C, 45 min, 63%; vi, pyridine, Ac20, trace of 2-dimethyl-aminopyridine (DMAP), 20 "C, 2 h, 92%; vii, mCPBA, CH2C12, 
5 min, 64%; viii, 0 3 ,  CH2CI2-MeOH, 5 : 2, -78 "C, then Me2S, 20 "C, 1 h, 91%; ix, see text. 
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Scheme 3. Reagents and conditions: i, NaHC03, mCPBA, CHZC12, 20 "C, 15 h; ii, LiBH4, THF, 40 "C, 1 h;  iii, Ac20, pyridine, DMAP 
as catalyst; iv, see Scheme 2. 
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octose and D-threo-D-ah-octose derivatives can be prepared 
from ( + ) - ( 5 ) . +  

The configuration of C(6) in (13) and (14) was established as 
shown in Scheme 3. Baeyer-Villiger oxidation of ketone 
(+)-( 12) gave exclusively (15). Reduction with LiBH4, fol- 
lowed by acetylation gave a 1 : 1 mixture of (16) and (17), 
which were readily separated by column chromatography on 
silica gel. The non-symmetrical compound (17) was hydroly- 
sed (goo/, aq. AcOH), then acetylated (Ac20, pyridine) to 
give meso-erythritol tetra-acetate. Under similar conditions, 
(+ )-(5) led to (18) and then to a 1 : 1 mixture of (16) (76%) and 
(19) (68%. isolated). Acidic hydrolysis of (19), followed by 
acetylation afforded pure D-threitol tetra-acetate, thus con- 
firming the (R)-configuration of the alcoholic carbon centre in 
(+)-(5). The relative configuration of C(S) in (13) and (14) 
was given by the 360 MHz 1H n.m.r. spectra of the 
corresponding carbonates obtained on treatment with phos- 
gene (CH2C12, pyridine, 0-15 "C, 1 h). The carbonate 
derived from (13) showed 3J[H-C(S), H-C(6)] 8.0 Hz (cis), 
while that derived from (14) displayed 3J[H-C(S), H-6(6)] 4.0 
Hz (trans). t 

The TiQ-mediated condensation of methyl 2,3-0-iso- 
propylidene-~-~-rzho-pentodialdo-l,4-furanoside with enol 
ether (-)-(2) gave only one unique compound.9 Work is 
underway to convert it into decose derivatives. We also plan to 
generate branched nonose derivatives10 by double hydroxyla- 
tion of (+)-(11) and its analogues. 
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Foundation for generous financial support. 

Received, 27th January 1989; Corn. 9100468H 

t All new compounds gave satisfactory elemental analyses and 
spectral data consistent with assigned structures. 
3: Further evidence for the stereochemical assignments was obtained 
from nuclear Overhauser enhancement experiments. 
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